Protective Effects of Acyl-coA Thioesterase 1 on Diabetic Heart via PPARα/PGC1α Signaling
نویسندگان
چکیده
BACKGROUND Using fatty acids (FAs) exclusively for ATP generation was reported to contribute to the development of diabetic cardiomyopathy. We studied the role of substrate metabolism related genes in the heart of the diabetes to find out a novel therapeutic target for diabetic cardiomyopathy. METHODS AND RESULTS By microarray analysis of metabolic gene expression, acyl-CoA thioesterase 1 (acot1) was clearly upregulated in the myocardia of db/db mice, compared with normal control C57BL/Ks. Therefore, gain-of-function and loss-of-function approaches were employed in db/db mice to investigate the functions of ACOT1 in oxidative stress, mitochondrial dysfunction and heart function. We found that in the hearts of db/db mice which overexpressed ACOT1, H(2)O(2) and malondialdehyde (MDA) were reduced, the activities of ATPases in mitochondria associated with mitochondrial function were promoted, the expression of uncoupling protein 3 (UCP3) contributing to oxygen wastage for noncontractile purposes was decreased, and cardiac dysfunction was attenuated, as determined by both hemodynamic and echocardiographic detections. Consistently, ACOT1 deficiency had opposite effects, which accelerated the cardiac damage induced by diabetes. Notably, by real-time PCR, we found that overexpression of ACOT1 in diabetic heart repressed the peroxisome proliferator-activated receptor alpha/PPARγ coactivator 1α (PPARα/PGC1α) signaling, as shown by decreased expression of PGC1α and the downstream genes involved in FAs use. CONCLUSION Our results demonstrated that ACOT1 played a crucial protective role in diabetic heart via PPARα/PGC1α signaling.
منابع مشابه
The effects of ginsenoside Rb1 on fatty acid β-oxidation, mediated by AMPK, in the failing heart
Objective(s): This study intended to investigate the effects of Ginsenoside-Rbl (Gs-Rbl) on fatty acid β-oxidation (FAO) in rat failing heart and to identify potential mechanisms of Gs-Rbl improving heart failure (HF) by FAO pathway dependent on AMP-activated protein kinase (AMPK). Materials and Methods: Rats with chronic HF, induced by adriamycin (Adr), were randomly grouped into 7 groups. Gs-...
متن کاملCytosolic acetyl-CoA is also a precursor for acetylcholine
Journal of Lipid Research Volume 54, 2013 2049 Copyright © 2013 by the American Society for Biochemistry and Molecular Biology, Inc. Cytosolic acetyl-CoA is also a precursor for acetylcholine ( 4 ), platelet-activating factor ( 5 ), and protein acetylation of both histone and nonhistone proteins ( 6 ). In contrast, maintenance of acetyl-CoA levels in mitochondria is mainly achieved via oxidatio...
متن کاملAcetaminophen-Induced Liver Injury Alters the Acyl Ethanolamine-Based Anti-Inflammatory Signaling System in Liver
Protective mechanisms against drug-induced liver injury are actively being searched to identify new therapeutic targets. Among them, the anti-inflammatory N-acyl ethanolamide (NAE)-peroxisome proliferators activated receptor alpha (PPARα) system has gained much interest after the identification of its protective role in steatohepatitis and liver fibrosis. An overdose of paracetamol (APAP), a co...
متن کاملDistinct transcriptional regulation of long-chain acyl-CoA synthetase isoforms and cytosolic thioesterase 1 in the rodent heart by fatty acids and insulin.
The molecular mechanism(s) responsible for channeling long-chain fatty acids (LCFAs) into oxidative versus nonoxidative pathways is (are) poorly understood in the heart. Intracellular LCFAs are converted to long-chain fatty acyl-CoAs (LCFA-CoAs) by a family of long-chain acyl-CoA synthetases (ACSLs). Cytosolic thioesterase 1 (CTE1) hydrolyzes cytosolic LCFA-CoAs to LCFAs, generating a potential...
متن کاملTwo families of acyl-CoA thioesterases in Arabidopsis.
We have identified two families of acyl-CoA thioesterase (ACHs) in Arabidopsis thaliana. One family, consisting of AtACH1 and AtACH2, appears to be peroxisomal, as they have type-1 peroxisomal targeting sequences. The other family, consisting of AtACH4 and AtACH5, resides in the endoplasmic reticulum, as shown by green fluorescent protein studies. AtACH2 has been overexpressed in Escherichia co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012